SPOKANE INDUSTRIAL PARK CLASS II INSPECTION, MAY 18-20, 1992

by Guy Hoyle-Dodson

Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Toxics, Compliance and Ground Water Investigations Section Olympia, Washington 98504-7710

> Water Body No. WA-57-1010 Segment No. 24-57-04

TABLE OF CONTENTS

<u>Pag</u>	<u>ge</u>
ABSTRACT	ii
INTRODUCTION	1
SETTING	1
PROCEDURE	3
QUALITY ASSURANCE/QUALITY CONTROL	3
Sampling	3 5
VOAs, BNAs, and Pesticide/PCBs	5
RESULTS AND DISCUSSION	5
NPDES Permit Comparison	6
Bioassays	15 15
Split Samples	17
CONCLUSIONS AND RECOMMENDATIONS	
NPDES Permit Comparison	19
Priority Pollutant Scans	20
Visits To Industries	
REFERENCES	23

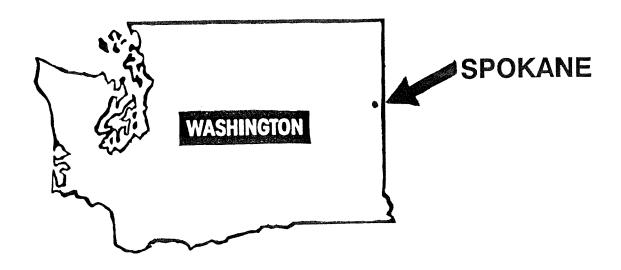
ABSTRACT

A Class II Inspection was conducted May 18-20, 1992, at the Spokane Industrial Park Sewage Treatment Plant. The Spokane Industrial Park facility treats wastewater from a variety of industrial tenants with an oxidation ditch facility. Effluent quality during the inspection generally met weekly and monthly NPDES permit limits; or, in the case of metals, met interim limits. Three target organic compounds were detected in the influent or effluent. The pesticide heptachlor was found in the effluent at a concentration of about eight times the EPA criteria to protect against chronic toxicity in receiving waters. The effluent copper concentration exceeded EPA acute toxicity criteria for receiving waters by roughly ten times. Also, lead, cadmium, mercury, and silver effluent concentrations exceeded the EPA chronic toxicity criteria. Rainbow trout, *Daphnia magna*, *Ceriodaphnia dubia* bioassays found no measurable toxicity in the Spokane Industrial Park effluent.

INTRODUCTION

A Class II Inspection was conducted at the Spokane Industrial Park (SIP) Sewage Treatment Plant (STP) on May 18-20, 1992. Guy Hoyle-Dodson and Marc Heffner, environmental engineers for the Washington State Department of Ecology (Ecology) Toxics, Compliance and Ground Water Investigations Section, conducted the inspection. Donald G. Nichols, permit manager for the Washington State Department of Ecology Eastern Regional Office, requested the inspection and provided background information on SIP's previous compliance history. Assisting onsite at the Sewage Treatment Plant was plant superintendent Al Willner. Scott Brown, SIP's park manager, acted as a contact person and provided information on the park's operation. Two of the park's tenants were visited during the inspection. Tom Crawford, chief industrial engineer at Columbia Lighting, Inc. and Shaun Tadino, at Boise Cascade Corporation Packaging Plant, represented their respective companies.

The SIP operates an industrial sewage treatment facility that provides secondary treatment for the park's sanitary and industrial wastewater. The facility is regulated by NPDES permit #WA-000095-7 (issue date: April 20, 1992). A companion Administrative Order was issued with the permit to give interim discharge limits for several parameters until improvements recommended in a forth-coming required engineering report are made. The new NPDES permit and Administrative Order have no percent removal requirements. Effluent is discharged into the Spokane River.


Three SIP tenants discharge pretreated process wastewater regulated by state waste discharge permits (SWDP) to the SIP STP. These industries include Columbia Lighting (SWDP #5222), Ketronics Inc. (SWDP #5284), and Johnson Matthey (SWDP # 5359).

The Class II Inspection was conducted after the issuance of the current permit and prior to an impending engineering study. The inspection helped determine the present plant operating status and will aid in evaluating the engineering report. Specific objectives include:

- 1. Verify compliance with both NPDES permit limits and with interim limits set forth by the Washington State Department of Ecology in an administrative order.
- 2. characterize wastewater toxicity with chemical scans and bioassays;
- 3. assess discharge to the plant by selected tenants for parameters of concern;
- 4. assess plant operation and ability to treat wastewater flows.

SETTING

The Spokane Industrial Park is located within Spokane County, east of the city of Spokane (Figure 1). The site encompasses 490 acres, zoned for light to heavy industry. The park is

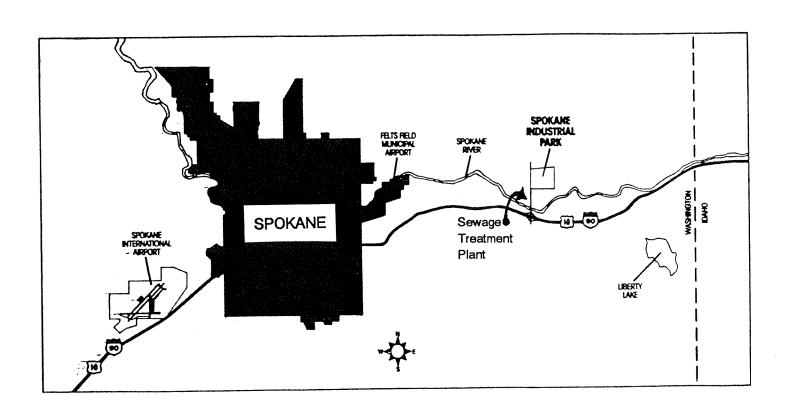


Figure 1
Sewage Treatment Plant
Site Map

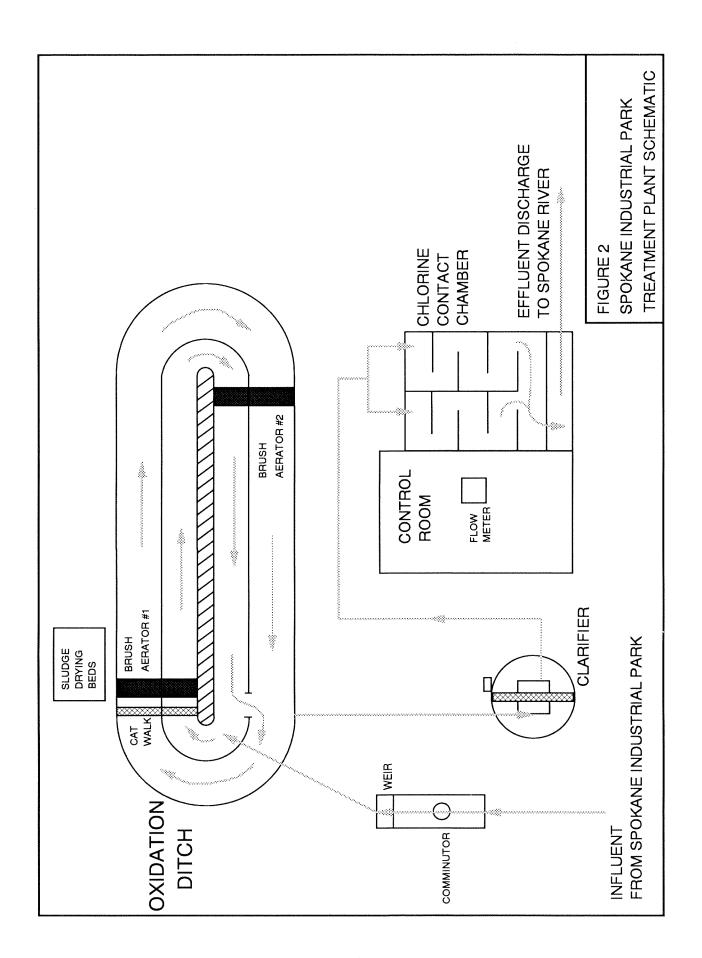
owned and operated by Pentzer Development Corporation, a subsidiary of Washington Water Power Company. There are approximately 100 tenants in the park.

The site was originally built as a U.S. Navy supply depot during WWII. The initial sewage treatment facility consisted of a trickling filter system designed to treat only sanitary wastes generated onsite. After conversion to an industrial park in the early 1960s an engineering study in 1969 showed that the STP was hydraulically overloaded and subjected to toxic effects from industrial discharge. In 1970 the current facility was constructed.

Treatment units at the facility during the inspection were: 1) a comminutor, 2) an oval oxidation ditch, 3) a secondary clarifier, and 4) a chlorine contact chamber (Figure 2). Influent flow was measured by a flow meter at a weir downstream of the comminutor. Discharge of treated wastewater to the Spokane River was via a single port diffuser. A small sludge drying bed was available but not in use due to infrequency of sludge wasting.

PROCEDURE

Ecology collected both grab and composite samples at the STP. Composite samples were collected at the influent weir and at the end of the chlorine contact chamber. Ecology Isco composite samplers collected equal volumes of sample every 30 minutes for 24 hours. Grab samples were collected from the headworks, from the oxidation ditch, and from the chlorine contact tank discharge. A grab sample was also taken of the SIP water supply. Sampler locations are summarized in Appendix A.


SIP also collected influent and effluent composite samples. Sampling locations corresponded to those of Ecology samples. Sampling periods and volumes replicated Ecology sampling procedures. Ecology and SIP samples were split for analysis by both Ecology and SIP labs. Parameters, samples collected, and schedules are summarized in Appendix B.

Samples for Ecology analysis were placed on ice and delivered to the Manchester Laboratory. Chain-of-custody procedures were observed throughout. Appendix C summarizes analytical procedures and the laboratories performing the analysis.

QUALITY ASSURANCE/QUALITY CONTROL

Sampling

Sampling quality assurance included priority pollutant cleaning of sampling equipment (Appendix D). Sampling in the field followed all protocols for holding times, preservation, and chain-of-custody set forth in the Manchester Laboratory Users Manual (Ecology, 1991).

General Chemistry Analysis

Holding times and procedural blanks were acceptable. Instrument calibrations, precision data, external verification standards, and standard reference material were within appropriate control limits.

Metals Analysis

Holding times and procedural blanks were generally acceptable. Instrument calibration, spike recoveries, duplicate spike recoveries, standard reference materials, and external verification standards were generally within acceptable control limits. Exceptions were:

- 1. Nickel was detected in the procedural blank. Nickel concentrations above detection limits and less than ten times the amount in the blank are assigned a "B" qualifier to indicate blank contamination.
- 2. Spike recoveries for mercury and silver were not in an acceptable range. These parameters are assigned an "N" qualifier to indicate poor spike recovery.

VOAs, BNAs, and Pesticide/PCBs

Holding times and method blanks were acceptable. Instrument calibrations were acceptable and met minimum and maximum response criteria. Matrix spike, precision data, and surrogate recoveries were acceptable and within QC control limits.

Bioassays

Negative control results, positive control results using a reference toxicant, and test environment data (i.e. dissolved oxygen, pH, etc.) were within acceptable ranges for all organisms tested.

RESULTS AND DISCUSSION

Flow Measurements

Ecology's evaluation of instantaneous flow through the weir corresponded closely with SIP plant flow meter measurement. The plant meter recorded an instantaneous flow of 0.822 MGD compared to a calculated instantaneous flow of 0.848 MGD. The meter flow reading was within 3% of the calculated flow. The average flow recorded by the plant meter for May 19, 1992, was 0.602 MGD. Maximum and minimum flows recorded on that day were 0.83 MGD and 0.41 MGD, respectively.

NPDES Permit Comparison

Inspection results were generally less than weekly and monthly permit limits; or for metals less than interim limits (Table 1). The TSS concentration was slightly greater than the monthly permit limits, but less than the weekly permit limits. The copper, lead, and zinc concentrations exceeded final permit limits, but met interim limits. Reduction of effluent metals concentrations is to be addressed in the forthcoming SIP engineering study.

Also, one of the fecal coliform samples slightly exceed the monthly permit limit. The geometric mean of the two samples collected (79/100 mL) was less than the monthly limit. The effluent chlorine residual was 0.1-0.2 mg/L, slightly less than or equal to the weekly limit, but greater than the monthly limit. Dechlorination will likely be necessary to meet both fecal coliform and chlorine residual monthly average limits.

General Chemistry/Plant Operation

Inspection general chemistry data are summarized in Table 2.

During the inspection the plant influent was very weak in comparison to domestic sewage for several parameters (Table 3). The oxygen demand parameters (BOD₅, TOC, and COD), NH₃-N, and total-P were all approximately one half the strength of weak domestic sewage. Because concentrations of all three of the oxygen demand parameters were low, it appears BOD₅ test inhibition due to toxicants is unlikely; and in fact, the waste has a low BOD₅.

As is expected with a low strength waste, treatment percent removals were fairly low (Table 3). The plant appeared to be actively nitrifying. The influent NH_3 -N concentration (7 mg/L) was reduced to <0.2 mg/L in the effluent. A concurrent increase in NO_2+NO_3 -N and decrease in alkalinity occurred as expected. Nitrification indicates biological activity is occurring in the oxidation ditch.

Comparison of typical design loading and operational parameters for extended aeration type activated sludge systems with SIP data suggests the plant is organically underloaded (Table 4 and Appendix E: Metcalf and Eddy, 1991). The sludge age is near the high end of the expected range. The MLSS concentration is 21% of the lower end of the usual design range. The operator had not wasted sludge for several months prior to the inspection and the MLSS concentration was still low. The MLVSS(microorganisms) is typically 70-90% of the MLSS (organic substances) (WEF, 1991) but was only 56% at the SIP STP suggesting a low level of biological activity in the system. The organic loading rate was about 20% of the lower end of the usual design range.

Reduced water usage and reduced cooling water usage in the park may increase the wastewater strength. A stronger influent may result in improved treatment efficiency (higher percent removals). A reduced hydraulic load would likely have little effect on effluent quality

Table 1 - NPDES Limits/Inspection Results Comparison - Spokane Industrial Park, 1992

				***************************************		_	Inspection Data	Data		
				Ecology	ly	STP			Grab	
Parameter	NPDES Permit Limits	NPDES Interin	NPDES Interim Permit Limits *	Composite		Composite		Sam	Samples	
				Location:	Ef-E	Ef-S	Ef-1	Ef-2	Ef-3	Ef-4
				Type:	E-comp 5/19-20	S-comp 5/19-20	grab 5/19	grab 5/19	grab 5/20	grab 5/20
	Monthly Weekly Average Average	Monthly	Weekly	Time: Lab#:	@ 218237	@ 218238	0955 218235	1525 218236	0950 218255	1050
		-				3				
BOD5 (mg/L) (lbs/D)	10.4 65				8	35		LL,	r i	L L
TSS (mg/L) (lbs/D)	15.2 95 190				17 85	1e 80	8 1 8 80 8	18	1 %	To ke
Fecal coliform (#/100 mL)	200	The section (ACC) and						į.	27	230
pH (S.U.)	6.0 < pH < 9.0						7.4	7.5	9.7	1
Flow (MGD)**	0.75				0.602	0.602	0.602	0.602		
Ammonia (NH3) (mg/L) (lbs/D)	8.5 53.2 106.3				0.17	0.10	0.09	0.12		1.11
Total Residual Cloride (mg/L)	0.05		Sufficient, but not in excess of that needed to attain fecal coliform limits in NPDES permit.		0.7	C	0.1	0.2	0.2	0.2
Phosphorus (mg/L) (lbs/D)	3.0 18.6				1.76 8.84	1.76	1.72 8.64	1.81	1 1	### ## ## ##
Copper (#g/L)	20.	400	200		332	356		ı	l I	I.,
Lead (µg/L)	8	80	180		40.1	41.3	<u>.</u>	i N	l	11. 1. 1.
Nickel (µg/L)	30009				170 B	187 B	1.1 1.1 3.1 3.1	1 .	ı	f.
Zinc (µg/L)	60	150	200		72.4	72.8	U.S.	ı	ř.	1
1,1,1 trichloroethane (µg/L)	100				ľ	1 ,	10 U	-0 -0	ľ.	
ள ல ^இ	Ecology Sample. Spokane STP sample. Composite sampling time: 0800–0800.	comp grab Ef	Composite sample. Grab sample. Effluent.		o.‡ ĀĀ	e analyte w e reported	The analyte was not detected above the reported amount. The reported value is an average flow.	ed above th	e reported	amount.
	Administrative Order in effect until remedial actions are taken to comply with permit.		Analyte was found in the analytic method blank indicating the sample may have been contaminated.	analytic meth ty have been o	od blank sontaminate	.d.				

⁷

Table 2 - Ecology General Chemistry Results - Spokane Industrial Park, 1992

Page 1

			7		2	i.	L	Ĺ	7 74	L 7L	C 74
Parameter	Location	=	7-111	<u> </u>	0-1		7-11	? . <u> </u>	t .	<u>ц</u> <u>1</u> ц	0 <u> </u>
	Type:	grab	grab	E-comb	S-comp	grab	grab	grab	grab	E-comp	S-comp
	Date:	5/19	5/19	5/19-20	5/19-20	5/19	5/19	5/20	5/20	5/19-20	5/19-20
	Time	0925	1510	e	@	0955	1525	0920	1050	e	e
	Lab Log #:	218231	218232	218233	218234	218235	218236	218255	218256	218237	218238
GENERAL CHEMISTRY	CONTRACTOR OF THE PROPERTY OF		***************************************								
Conductivity (umbos/cm)		592	681	776	779	575	901			612	634
Alkalinity (mg/l CaCO3)		1	3	183	179) }	3			128	128
Dardross (mg/L Cacco)				175	7.2					170	200
colling (mg/L caccs)				2	1					-	}
To (ma/l)				622	805					442	498
TNVS (mo/l)				384	380					272	316
TSS (ma/L)		80	39	89	100	18	8			17	16
TNVSS (mg/l.)				26	30					∞	_
OXYGEN DEMAND PABAMETERS	BS			i	;						
BODS (mg/l)	:			36	47					60	7
		7,8	7.3	110	130	77	44			42	42
		7 7 8	2 6	8 80	30.7	α	מ			10.3	1.00
LOC (Water High)		•	3	9		?))			2	?
Total Bernington MITTON (mm.)				0.0+	440					80 0	0
iotal Persuifate N(TPN) (mg/L)				0 6	1 -	((((1			0 0	2 6
NH3-N (mg/L)				0.62	1.31	0.085	0 1 0			0.108	0.102
NO2+NO3-N (mg/L)				1.74	1.63	6.07	8.97			- თ	9.46
Total-P (mg/L)				1.98	2.87	1.72	1.8.1			1.76	1.76
MISCELLANEOUS											
Oil and Grease (mg/L)		 ∞	4.3			- 65	- CS				
F-Coliform MF (#/100mL)								27	230		
Cyanide total (ug/L)				4	0					7	4 :
Cyanide (wk & dis ug/L)				5 ∪	2 ∪					2 0	2 C
FIELD OBSERVATIONS											
Temperature (C)		16.7	17.5			16.4	17.7	15.4			
Temp-cooled (C)*+					4.7						8.0
		7.68	7.45	7.76	7.93	7.44	7.51	7.58		7.8	/ 80 80
Conductivity (umhos/cm)		299	287	652	650	591	206			222	595
Total Chlorine Residual (mg/L)						0.1	0.2	0.2	0.2	0.1	0.1
	Ecology Sample				. []	The analyte was not detected at or above the reported estimate result	not detected	at or above th	ne reported e	stimate result	
ט ני	Snokane STP sample	a			1 BK	Transfer blank			5		:
0 6	Composite sampling time:	time: 0800-0800.	300.			Influent					
dwoo	Composite sample.					Effluent					
grab	Grab sample.					SIP water supply	>				
gr-comp	Grab-composite sample.	nple.			MLSS	Oxidation Ditch Solids	Solids				
7	The analyte was positively	sitively identified and	dand		CoLtg	Columbia Lighting discharge	ng discharge				
	the associated result is an	t is an estimate	_		*	Refrigerated temperature	nerature				
	The analyte was not detected above the reported value	detected abov	e the reported	d value	•						

Table 2 – Ecology General Chemistry Results – Spokane Industrial Park, 1992	gy General Che	emistry Result	s – Spokane	Industrial Pa	ırk, 1992		Page 2
Parameter II	Locatn:	Ef-GC	MLSS-1	MLSS-2	Intake	CoLtg-1	CoLtg-2
	Type:	gr-comp	grab	grab	grab	grab	grab
	Date:	5/19	5/19	5/19	5/19	5/19	5/19
	Time:	1550	1050	1520	1620	1355	1405
	Lab	218239	218240	218241	218243	218246	218247
GENERAL CHEMISTRY	کا≾	i			Ċ	i	,
Conductivity (umhos/cm)	(E)	286 286 296 396 496 496 496 496 496 496 496 496 496 4			292	365	/44
Alkalinity (mg/L cacos)	(S) (S)	160			5 1		
SOLIDS 4		2					
TS (mg/L)							
TNVS (mg/L)							
TSS (mg/L)			330	310		8	159
TNVSS (mg/L)			150	130			
OXYGEN DEMAND PARAMETERS	ARAMETERS						
BOD5 (mg/L)							r L
COD (mg/L)						න .	09/
TOC (water mg/L)						12.3	304
NOIHENIS	:						
lotal Persulfate N(TPN) (mg/L)	N) (mg/L)					0000	c
NAS-IN (IIIg/L)						60.0	0.050
Total-P (mg/L)						2 60 2 00 2 00 2 00	99.4
MISCELLANEOUS							
Oil and Grease (mg/L)							
F-Coliform MF (#/100mL)	mL)						
Cyanide total (ug/L)							
Cyanide (wk & dis ug/L)	()						
Temporature (C)	2				10.7	A A C	00
Temperature (C) *+					2		2
Ha Ha					7.78	8.06	7.39
Conductivity (umhos/cm)	(E)				255	312	647
Total Chlorine Residual (mg/L)	al (mg/L)					0.1	
ш о 🕲	Ecology Sample. Spokane STP sample. Composite sampling time: 0800–0800.	e. time: 0800–0800.			Tr BIK	Transfer blank Influent Effluent	
grab gr-comp	Grab sample. Grab-composite sample.	nple.	7		MLSS	Oxidation Ditch Solids Columbia Lighting discharge	charge
0	The analyte was not detected above the reported value.	detected above the	reported value.		+	Retrigerated temperature	ure.

							CONCENTRATION (mg/L)	TION (mg/L)
		CONCENTRATION (mg/L)	TION (mg/L)				Typical*	Typical*
PARAMETER	SIP-INF	NF	SIP-EF	·EF	Percent R	Percent Removal (%)	Domestic	Domestic
SAMPLER:**	Ecology	Spokane	Ecology	Spokane	Ecology	Spokane	Weak	Average
Total Solids (TS)	622	298	442	498	58.9	16.7	350	757
Total Suspended Solids (TSS)	89	100	Z	16	75.0	84.0	100	223
Total NonVolatile Suspended Solids (TNVSS)	26	30	8	.	69.2	76.7	50	20
Biological Oxygen Demand (BOD5)	36	47	æ	2	77.8	85.1	410	243
Total Organic Carbon (TOC)	26.8	30.7	10.3	11:3	61.6	63.2	80	177
Chemical Oxygen Demand (COD)	110	130	42	42	61.8	67.7	250	583
Total Nitrogen (Total Persulfate)	13.8	14.8	86.6	10.3	27.7	30.4	50	7 8
Organic Nitrogen	5.44	5.86	0.71	0.74	86.9	87.4	8	6
Ammonia (NH3-N)	6.62	7.31	0.17		97.4	986	12	53
Nitates & Nitrites (NO2&NO3-N)	1.74	1.63	r. 6	9.5	-423.0	-482.8	0	0
Total Phosphorus	1.98	2.87	1.8	1.8	9.1	37.3	4	6
SIP Spokane Industrial Park INF Influent Wastewater EF Effluent Wastewater		Ecology Spokane * *	Ecology sample Spokane Spokane Industri Typical domestic wastewal Ecology laboratory results	Ecology sample Spokane Spokane Industrial Park sample Typical domestic wastewater (Medcalf & Ecology laboratory results	Ecology sample Spokane Spokane Industrial Park sample Iypical domestic wastewater (Medcalf & Eddy, 1991) Ecology laboratory results	11)		

Parameters	Design Parameters for Activated Sludge Processes ¤	Spokane SIP
Process Modification:	Extended Aeration	Extended Aeration
Flow Regime:	Plug or Complete Mix	Complete Mix
Food-to- Microorganism Ratio (F/M) (Ib BOD/[Ib MLVSS/day])	0.05 - 0.15	0.18
Sludge Age (Days)	10 - 30	
Mixed-Liquor Suspended Solids (MLSS) (mg/L)	2000 - 6000	320
Detention Time (hydraulic) (hours)	10-20	
Aerator Loading (lb BOD/1000 cu ft)	10 - 25	

(concentrations of pollutants), although effluent pollutant loads (pounds discharged) may be less with the lower flow. One potential concern at the facility has been toxics. Reduced flows to the plant may result in higher concentrations of potential toxicants in the influent and effluent unless pollutant loads to the STP are reduced at their sources.

Plant operation consisted primarily of monitoring to satisfy NPDES requirements. The low plant loading has allowed permit compliance with minimal time expenditure by the plant operator. Compliance with the new permit after the required engineering study is completed will likely require more process control and/or an active pretreatment program to meet metals limits. Either of these items will require more time for STP operation and park tenant discharge monitoring/control by the SIP STP owner, Pentzer Development Corporation. During the inspection an "Operation and Maintenance Manual" for the plant could not be located. Locating or compiling an "Operation and Maintenance Manual" is recommended to provide guidance to the plant operator.

Priority Pollutant Scans

Acetone, bis(2-ethylhexyl)phthalate, and heptachlor were the only three target organic compounds detected in the influent or effluent (Table 5). Acetone was the organic found at the highest concentration in both the influent (540 to 2500 μ g/L) and effluent (27 to 42 μ g/L). There are no EPA water quality criteria for acetone, although the effluent concentration was less than threshold concentrations (8300-14250 mg/L) found to cause immobilization in several aquatic invertebrates and fishes by the Water Quality Board of California (Mckee & Wolf, 1963).

The effluent concentration of heptachlor (0.03 μ g/L) exceeded the EPA chronic criteria for receiving waters of 0.0038 μ g/L (EPA, 1986). Identifying the source as past use or present use of the material and taking any appropriate action is suggested.

Several metals exceeded chronic or acute EPA water quality criteria in the effluent (Table 5: EPA, 1986). The effluent copper concentration exceeded acute toxicity criteria by roughly ten times. Also, lead, cadmium, mercury, and silver effluent concentrations exceeded the EPA chronic water quality criteria. The SIP water supply sample had low metals concentrations indicating the metals observed in the influent and effluent came from SIP tenant wastewaters (Table 6). A study currently underway by the Ecology Watershed Assessments Section appraising the biological impact of metals in the Spokane River system may help define the significance of metals concentrations in the SIP discharge.

Changes in metals concentrations across the plant ranged from moderate increases to moderate decreases (Table 6). Association of metals with the MLSS and subsequent loss of MLSS in the effluent is likely responsible for this observation. Collecting a sample of the sludge (perhaps settling and spinning down a MLSS sample) for metals analysis is suggested to determine metals concentrations in the oxidation ditch solids.

Table 5 - VOA, Pesticides/PCB, and Metals Detected - Spokane Industrial Park, 1992

	T		ा				(E) *										7					
ality	Chronic	Fresh		(//B//			3 *		0.0038 (r)		* 009.1	4 48 4 061 4 061	19 +	6.3	247 +	0.12	+ 001	nted				
EPA Water Quality Criteria Summary	င်)	***		(E) *		Ξ		*	* .	+ +	+	+	+ •	-	e prese	svel.	rsed).		
EPA W	Acute	Fresh		(ng/L)	17,500		940 *(1)		0.52		9,000	850 360	29	160	2,222	10.1	3	eria. Valu	Ellect Le	70 mg/L t		
CoLtg-2	5/19	1405	218247	(7/8 <i>m</i>)	48 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					(//B//)	35 P	(48.7	55.4 0.45 DM		0.5 UN	0,00	develop crite	est Observed eria (7.8 pH u	ent criteria (1	ters	
CoLtg-1 arab	5/19	1355	218246	(mg/L)	27 10 U 1 J 1 J 2 J					(/\ma/\L)	30 U 3.7 P		3.5 P C			0.5 U C	: 1	Insufficient data to develop criteria. Value presented	is the LOEL - Lowest Observed Effect Level. bH dependent criteria (7.8 pH used).	Hardness dependent criteria (170 mg/L used).	Total Phthalate Esters	Heptachlor
Intake	5/19	1620	218243							(//B//)	30 U 4.2 P		Ω Ω	⊃ :		0.5 UN		Insul *	PHO **	+ Hard	i Tota	r Hept
Ef-S S-comp	5/19-20	⊚	218238							(µg/L)	30 U 3.6 P	Č.	356	41.3		Z 27 5	0.27	nk		ypply	itch Solids	ghting disc
E-comp	5/19-20	©	218237			(ng/L)	7	(//B//)	0.03 JP	(/\dag{\mathcal{n}})	30 U	ŗ	332	40.1 0 552 N		2 6. t	1,7)	Transfer blank	Effluent	SIP water supply	Oxidation Ditch Solids	Columbia Lighting disc
Ef-2 grab		1525	218236	(μg/L)	24 6 6 6 6 O O O O O													Tr Bik	0800. Ef	Intake	MLSS	CoLtg
Ef-1 grab		0955	218235	(µg/L)	27 10 10 10 10 10											-			Spokanie s i r sampie. Composite samplina time: 0800-0800.			ple.
S-ful S-comp	5/19-20	⊜	218234							(µg/L)	30 U 2.9 P	Ċ	505	30.6 0.671 N		0.5 UN	2	ample.	Spokane o r sample. Composite sampling ti	sample.	ole.	-composite sample.
Inf-E E-comp	5/19-20	©	218233			(mg/L)	7	(//B///)	0.018 JP	(//B//)	30 U 2.8 P	O C	564 564	10.5 0.973 N		Z 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0,	Ecology Sample.	Spokane S Composite	Composite sample.	Grab sample.	Grab-com
Inf-2 arab	5/19	1510	218232	(µg/L)	540 D 10 U 10 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0													ш	0 ල	comp	grab	gr-comp
Inf-1 grab	5/19	0925	218231	(µg/L)	2500 D 10 U 10 U 10 U													7	rea.			ction limits
Tr BIK	5/18	1540	218230							(\ma/L)	30 U 1.5 U		3.0	U 0.1 U 0.1 Ng		0.5 UN	P.	ethod blank,	iii comaniine I. but		Ф	rument dete
: ii	.i.	. .	#:					spu		= 170								analytic me	ty nave bee Iv identified	n estimate.	pike sampl	atrol limits.
Location: Type:	Date:	Time:	Lab Log#:	ક્ષ	Acetone 4-Methyl-2-Pentanone (MIBK) Toluene Ethylbenzene Total Xylenes	SI	hthalate	Pesticides/PCBs Compounds (UNITS:)		Hardness =								Analyte was found in the analytic method blank,	indicating the sample may have been contaminated. The analyte was positively identified, but	he associated result is an estimate.	For metals analytes the spike sample	recovery is not within control limits. Analyte was detected above the instrument detection limits,
neter				VOA Compounds (UNITS:)	Acetone 4-Methyl-2-Penta Toluene Ethylbenzene Total Xylenes	BNA Compounds (UNITS:)	Bis(2–Ethylhexyl)Phthalate	cides/PCB S:)	shlor	Metals (Total) (UNITS:)	ony c	Pentavalent Trivalent			ć.			Analyte was	nuraung m Fhe analyte v	he associate	or metals a	ecovery is n Analyte was
Parameter				VOA (UNITE	Acetone 4-Methy Toluene Ethylben Total Xyl	BNA	Bis(2-	Pestici (UNITS:	Heptachlor	Metals (UNITS:)	Antimony Arsenic	Trive	Copper	Lead	Nickel	Silver		<u>м</u> .:	= ⊢ ¬	-	z	۵.

Analyte was detected above the instrument detection limits, The analyte was not detected above the reported result.

but below the minimum qualification limits.

Analysis of sample used a dilution.

<u>م</u> ر

¹³

(\ma/\rack{L}) 5/19 1620 grab 218243 Composite sample. Grab sample. Spokane Sample -24.5 29.5 48.9 3.0 Z Z Y. 15.1 % Percent Removel Table 6 - Increase and Removal of BNAs, Pesticides/PCB, and Metals - Spokane Industrial Park, 1992 Across STP Composite collection time: 08:00-08:00 Ecology Sample 0 -14.8 41.1 -281.9 -58.3 43.3 57.4 -66.7 -10.7 -28.1 comp grab 8 Ef-S (\ma/L) S-comp 0 z m z5/19-20 218238 ⊃ • 0.651 187 2.64 356 41.3 SIP water supply Spokane sample Ecology sample Not available Influent Effluent (\ma/\rac{1}{2}) 田田 (\ma/L) E-comp 0 (\may_L) ر 2 0.03 JP 30 U z ωZ 5/19-20 218237 0.552 332 6 ᄪᅼ Intake S & S 366 0.5 UN 85.7 Inf-S S-comp 5/19-20 (mg/L) $\supset c$ 0.671 N 218234 30 2.12 505 30.6 Analyte was detected above the instrument detection limits, The analyte was not detected above the reported result. indicating the sample may have been contaminated. Analyte was found in the analytic method blank, (//B//) (\ma/\rac{1}{2}) Inf-E Е-сошр (\makepage /L) 0.018 JP 5/19-20 218233 ے در 399 1.2 N 0.973 N but below the minimum qualification limits. 10.5 56.5 For metals analytes the spike sample recovery is not within control limits. Type: Date: Time: Location: Lab Log#: Pesticides/PCBs Compounds (UNITS:) Bis(2-Ethylhexyl)Phthalate BNA Compounds (UNITS:) Metals (Total) Parameter Heptachlor Cadmium Antimony Mercury Arsenic Copper Nickel Silver Lead Zinc

Complete organics and metals scan results are tabulated in (Appendix F). Also, several tentatively identified compounds (TICs - non target compounds detected with the scan) were found at concentrations less than $100 \mu g/L$. TICs are summarized in Appendix G.

Bioassays

The rainbow trout and *Daphnia magna* acute toxicity tests found no toxicity in the SIP effluent (Table 7). The *Ceriodaphnia dubia* survival and reproduction test indicated no acute or chronic toxicity.

The fathead minnow chronic toxicity test data show little correlation between effects and concentration. Laboratory notes were double-checked, but a source of error could not be identified. The data are presented but are inconclusive.

Lack of toxicity in the effluent was somewhat surprising given the high concentration of copper in the effluent (332-356 μ g/L). At SIP effluent hardness concentrations, the expected LC₅₀ for rainbow trout and *Daphnia magna* would be 10% and 33-50% of the effluent concentration, respectively (EPA, 1980).

It is possible that the copper is adsorbed or bound reducing its biological availability. Another possibility is $CaCO_3$ (alkalinity) reacting with free Cu^{2+} to form $Cu(CO_3)_2^{2+}$, $CuHCO_3^{+}$, and $CuCO_3^{0}$ (EPA, 1987). These three species are soluble, generally not toxic, and are formed at the observed pH and alkalinity concentrations (Miller & Mackay, 1979).

A prior investigation of high copper concentrations in SIP wastewater considered a copper dye used in printing ink (Leber, 1984). A representative of Leber Ink, the dye manufacturer, pointed out the copper is tightly bound within the copper phthalocyanine molecule and not available to cause toxic effects. The company using the ink is no longer listed as a tenant of Spokane Industrial Park. Other firms in the facility might be using this particular printing ink, but during the inspection none were identified.

The source of copper remains unknown. Determining the source(s) could help explain the unusual bioassay results and help SIP meet final NPDES permit limits.

Visits To Industries

Two industries in the SIP were visited during the inspection. They were the Boise Cascade Corporation Packaging Plant and Columbia Lighting, Inc.

Interest in the Boise Cascade facility was due to frequent color change occurring in the SIP STP influent and the past history of dyes in the SIP (see discussion in priority pollutant section). The Boise Cascade facility labels packaging boxes (primarily corrugated cardboard). Ink used for

Table 7 - Effluent Bioassay Results - Spokane Industrial Park,1992.

NOTE: all tests were run on the effluent (Ef-GC sample) - lab log # 218239.

Ceriodaphnia dubia - 7-day Partial Life Cycle Test

(Ceriodaphnia dubia)

	#	Percent	Total	Mean Number
Sample	Tested *	Survival	Reproduction	Young/Female
Control	10	90	226	21
6.25% Effluent	10	90	284	23
12.5% Effluent	10	90	225	24
25% Effluent	10	90	241	23
50% Effluent	10	100	226	28
100 % Effluent	10	90	210	23
		Acute		Chronic
	LC50 =	=>100 % effluent		
	LOEC	= 100 % effluent	LC	DEC = >100 % effluent
	NOEC	= 100 % effluent	NO	DEC = >100 % effluent

^{* 10} replicates of 1 organism

Daphnia magna - Acute Toxicity Test (48 hour LC50)

(Daphnia magna)

Sample	# Tested	Percent Survival
Control	10	100
6.25 % Effluent	10	100
12.5 % Effluent	10	100
25 % Effluent	10	100
50 % Effluent	10	100
100 % Effluent	10	100

LC50 > 100 % effluent NOEC > 100 % effluent LOEC > 100 % effluent

Fathead Minnow - 7-day Larval Fish Survival and Growth Test

(Pimephales promelas)

	#	Percent	Average Growth per
Sample	Tested *	Survival	Fish (mg)
Control	40	81	0.53
6.25 % Effluent	40	18	0.93
12.5 % Effluent	40	50	0.79
25 % Effluent	40	30	1.30
50 % Effluent	40	40	0.99
100 % Effluent	40	75	0.46
		<u>Acute</u>	Chronic
	L	OEC: N.A.**	NOEC: N.A.**
	1	C50: N.A.**	LOEC: N.A.**

four replicates of 10 organisms

Rainbow Trout - 96 hour Acute Toxicity Test

(Oncorhynchus mykiss)

	#	Percent
Sample	Tested	Survival
Control	30	100
100% Effluent	30	97

NOEC – no observable effects concentration

LOEC – lowest observable effects concentration

LC50 – lethal concentration for 50% of the organisms

EC50 – effect concentration for 50% of the organisms

^{*} Not Available due to negative dose response relationship of organisms.

labelling was distributed by a roller with micro-pores to minimize ink used and wasted. Cleanup was with water by an automated roller clean-up unit. The amount of water used was approximated at less than ten gallons per clean-up by the Boise Cascade representative. Based on the small amount of water used and the type of ink being used, no samples were collected.

Two grab samples were collected at Columbia Lighting, Inc. One sample (CoLtg-1) was collected from the plant discharge. The second sample (CoLtg-2) was collected from the washer-wastewater neutralization tank. Contents of the tank are occasionally bled into the plant discharge, but this was not being done when samples were collected.

General chemistry parameters for the plant discharge (CoLtg-1 - Table 2) were present in fairly low concentrations, although the total-P concentration was moderately elevated (8.6 mg/L). Metals concentrations approximated the concentrations found in the SIP water supply (Table 5). Acetone (27 μ g/L) and total xylenes (42 μ g/L) were detected. A system of flow measurement was being investigated for installation. Accurate flows would help determine if the total-P amount is significant.

The neutralization tank (CoLtg-2 - Table 2) sample had higher COD, TSS, and total-P concentrations than the plant discharge. Acetone and total xylenes concentrations were similar to the plant discharge (Table 5). Metals concentrations were all less than either the SIP STP effluent concentration or water quality criteria. The volume of the neutralization tank is fairly small (4800 gallons) with an average daily discharge of 860 gallons per day.

Split Samples

Ecology laboratory results of the Ecology and SIP samples were similar (Table 8). The Ecology influent sample BOD₅ and TSS were slightly weaker than the SIP sample. SIP sampling appeared appropriate.

SIP analyzes pH and total chlorine residual at the small laboratory at the STP. A split sample found good agreement between Ecology and SIP total chlorine residual results and poor agreement for pH results. The SIP pH meter allowed only single point calibration and was difficult to operate. Replacement of the pH meter is recommended.

Since the inspection, the Ecology Laboratory Accreditation program issued the SIP STP provisional accreditation for pH and chlorine residual analysis. SIP agreed to replace their pH meter and to provide additional total chlorine residual test training for the operator to attain accreditation.

The balance of the SIP analyses are sent out to a contract laboratory. Ecology and SIP results for COD, total-P, fecal coliform, copper, and zinc compared well. Nickel, NH₃-N, effluent TSS, and effluent BOD₅ results showed some differences, but were in the same range. The influent TSS and influent BOD₅ results were far enough apart to be of concern. Attention should

Table 8 - Split Sample Results Comparison - Spokane Industrial Park, 1992

Parameter	Location; Type: Date: Time: Lab Log #:		Inf-E E-comp 5/19-20 @ 218233	S 20	Inf-S S-comp 5/19-20 @ 218234	Ef-2 grab 5/19 1525 218236	2 2 5 5 8	Ef-3 grab 5/20 0950 218255	Ef-E E-comp 5/19-20 @ 218237		Ef-S S-comp 5/19-20 @ 218238		
	Laboratory*												
TSS (mg/L)	Ecology Spokane		68 27.9	17	100 74.7				14.4		18.5		
BOD5 (mg/L)	Ecology Spokane		36 53.8		47 85.5				13.6		7		
COD (mg/L)	Ecology Spokane		110	-	130 118.7				42 39.3		42 39.3		
NH3-N (mg/L)	Ecology Spokane		6.62 4.55	17.	7.31 6.3				0.169	0	0.102		
Total-P (mg/L)	Ecology Spokane		2.11	CALCA	2.73				1.76		1.76		:
F-Coliform MF (#/100mL)	Ecology Spokane							27 50		•			
PP Metals (water)													
Copper (µg/L) Lead (µg/L)	Ecology Spokane Ecology		564 543 10.5	7	505 572 30.6				332 383 40.1		356 409 41.3		
Nickel (µg/L) Zinc (µg/L)	Spokane Ecology Spokane Ecology Spokane		399 246 56.5 40	***	30 366 263 85.7 76				26 170 B 125 72.4 85		55 187 B 147 72.8 81		
Hd	Ecology Spokane					7.51 6.8							111
Total Chlorine Residual (mg/L)	Ecology Spokane					0.2							1. 3. 1. 5.
Inf Ef grab comp Ecology Spokane @	Influent Effluent Single grab. Composite sample Ecology analysis. Spokane analysis. Sample period: 08:00–08:00.	ample ysis. alysis. od: 08:0	00-08:00			ш *	Analyte the san SIP and Other 5	Analyte was also found in the analytic mer the sample may have been contaminated. SIP analyzed pH and total chlorine residu Other SIP analyses were contracted to Inl.	und in the a e been con d total chlo were contra	unalytic I taminat rine res acted to	method t ed. idual at t Inland E	Analyte was also found in the analytic method blank indicating the sample may have been contaminated. SIP analyzed pH and total chlorine residual at the STP lab. Other SIP analyses were contracted to Inland Environmental Laboratoies.	aboratoies.

be paid to the contract laboratory's accreditation program performance evaluation results for BOD₅, TSS, NH₃-N and nickel to help determine if there is a problem. Additional sample splits for these parameters should be considered as possible.

CONCLUSIONS AND RECOMMENDATIONS

Flow Measurement

The STP in-plant flow meter was accurate in comparison to Ecology instantaneous flow measurements.

NPDES Permit Comparison

Based on inspection results, SIP effluent quality generally met weekly and monthly permit limits. Metals concentrations were less than interim limits, but copper, lead, and zinc concentrations exceeded final permit limits. The TSS concentration and one fecal coliform result were slightly greater than the monthly average permit limits.

• Dechlorination will likely be necessary to meet both fecal coliform and chlorine residual monthly average limits.

General Chemistry/Plant Operation

During the inspection the plant influent was very weak in comparison to domestic sewage for several parameters. All concentrations of oxygen-demanding substances were low. The plant appeared to be actively nitrifying.

• Low influent BOD₅ concentrations due to test inhibition by toxicants appears unlikely; and in fact the waste has a low BOD₅.

Comparison of typical loading and operational parameters with SIP data suggests the plant is organically underloaded. The low plant loading has allowed permit compliance with minimal plant operation.

- Compliance with the new permit metals limits will likely require more operator effort for process control and/or an active pretreatment program.
- Locating or compiling an "Operation and Maintenance Manual" is recommended to provide guidance to the plant operator.

Percent removals for most parameters were fairly low. Reduced water usage and/or reduced cooling water discharges in the SIP may increase the wastewater strength and result in higher percent removals. Reducing wastewater flows is likely to increase removal efficiency, however,

effluent concentrations of most pollutants will probably change little. Note that flow reduction could increase influent concentrations of potential toxicants. To prevent adverse impacts from this potential increase, the sources of toxics should be identified and reduced (see below).

Priority Pollutant Scans

Three target organic compounds were detected in the influent or effluent. The effluent concentration of heptachlor, which exceeded chronic criteria by about eight times, was the only organic compound exceeding EPA water quality criteria (EPA, 1986).

• Identifying the heptachlor source as past use or present use and taking appropriate action is recommended.

The effluent copper concentration exceeded EPA acute toxicity criteria by roughly ten times (EPA, 1986). Also, lead, cadmium, mercury, and silver effluent concentrations exceeded the EPA chronic water quality criteria.

• Collecting a sample of the sludge (perhaps settling and spinning down a MLSS sample) for metals analysis is suggested to determine metals concentrations in the oxidation ditch solids.

Bioassays

The rainbow trout and *Daphnia magna* acute toxicity tests found no toxicity in the SIP effluent. The *Ceriodaphnia dubia* survival and reproduction test indicated no acute or chronic toxicity. The fathead minnow test data show little correlation between effects and concentration and are likely of little value. Lack of toxicity in the effluent was somewhat surprising given the high concentration of copper in the effluent.

- Determining the source(s) of copper could help explain the unusual bioassay results and help SIP meet final NPDES permit limits.
- A study currently underway by the Ecology Watershed Assessment Section appraising the biological impact of metals in the Spokane River system may help define the significance of metals concentrations in the SIP discharge.

Visits To Industries

The Boise Cascade discharge appeared capable of causing only minimal impacts at the SIP STP, so no samples were collected.

The significance of analytes detected in samples of the Columbia Lighting, Inc. discharge is unclear without corresponding flow data.

• A flow meter should be installed by Columbia Lighting to measure discharge to the SIP sewer system.

Split Samples

SIP sampling appeared acceptable.

SIP pH results showed poor agreement with Ecology results.

• Replacement of the pH meter is recommended.

SIP contract laboratory results were similar to Ecology results for most parameters.

• Attention should be paid to the contract laboratory's accreditation program performance evaluation results for BOD₅, TSS, NH₃-N and nickel. Additional sample splits for the parameters noted above should be considered as possible.

REFERENCES

- APHA, AWWA, WPCF, 1989. <u>Standard Methods for the Examination of Water and Wastewater, 17th edition</u>. American Public Health Association. Washington DC.
- EPA, 1980. <u>Ambient Water Quality Criteria for Copper</u>. United States Environmental Protection Agency, EPA 440/5-80-036. Pg. B-20.
- EPA, 1986. Quality Criteria for Water. EPA 440/5-86-001.
- EPA, 1987. <u>Process, Coefficients, and Models for Simulating Toxics Organics and Heavy Metals in Surface Waters</u>. EPA/600/3-87/015.
- EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 2nd edition. U.S. Environmental Protection Agency, Cincinnati, OH, EPA/600/4-89/001.
- EPA, 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving waters to freshwater and Marine Organisms. Weber, C.I. (ed.), U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH, 4th Edition, EPA/600/4-90/027.
- Leber, L., 1984. Letter to Ray Roger of the Department of Ecology's Eastern Regional Office, October 3, 1984, 7 pages.
- Mckee, J.E. and H.W. Wolf, Ed., 1963. <u>Water Quality Criteria</u>, 2nd Edition. The Resources Agency of California, State Water Quality Control Board.
- Metcalf and Eddy, 1991. <u>Wastewater Engineering Treatment Disposal Reuse</u>, Third Edition. McGraw-Hill, New York.
- Miller, T.G. and Mackay, W.C., 1979. The Effects of Hardness, Alkalinity, and pH on Test Water in the Toxicity of Copper to Rainbow Trout. University of Alberta, Dept. of Zoology.
- Verschueren, K., 1983. <u>Handbook of Environmental Data on Organic Chemicals, Second Edition</u>. Van Nostrand Reinhold Co., New York.
- Washington State Department of Ecology, 1985. <u>Criteria for Sewage Works Design</u>. DOE 78-5.
- WEF, 1991. <u>Design of Municipal Wastewater Treatment Plants Volume I, Manual of Practice</u>
 <u>No. 8</u>. Joint Task Force of the Water Environmental Federation, Book Press, Inc.

Windholz, Martha, Ed., 1983. The Merck Index, Tenth Edition. Merck & Co., Inc. Rahway, N.J.

APPENDICES

Appendix A - Sampling Locations - Spokane Industrial Park, 1992

Inf-1 & Inf-2:

Influent grab samples collected at the headworks just past the weir.

Inf-S & Ef-E:

Spokane Industrial Park STP and Ecology composite influent sample collected at the headworks.

Ef-1 & Ef-2:

Effluent grab samples collected at the discharge from the chlorine contact chamber.

Ef-3 & Ef-4:

Effluent fecal coliform grab samples collected at the discharge from the chlorine contact chamber.

Ef-S & Ef-E:

Spokane Industrial Park STP and Ecology composite effluent sample collected from the end of the channel in the chlorine contact chamber.

EF-GC:

Effluent bioassay grab-composite samples collected at the discharge from the chlorine contact chamber.

MLSS-1 & MLSS-2:

Grab samples from the mixed liquor in the aeration ditch.

Intake:

Grab samples taken from the well supplying water to the Spokane Industrial Park.

CoLgt-1:

Grab samples taken from the wastewater discharge channel at Columbia Lighting, Inc.

CoLgt-2

Grab sample taken from the Columbia Lighting, Inc. "Ecology Tank" (washer -wastewater neutralization tank).

Appendix B - Sampling Schedule - Spokane Industrial Park, 1992

	-	í	,	-			, i	1	1	ì	1	ì	ł
rarameter	Location: Type: Date: Time:	5/18 1540	grab 5/19 0925	grab 5/19 1510	INT-E E-comp 5/19-20 @	S-comp 5/19-20 @	Ef-1 grab 5/19 0955	Ef-2 grab 5/19 1525	Ef-3 grab 5/20 0950	E1-4 grab 5/20 1050	E1-E E-comp 5/19-20 @	E1-S S-comp 5/19-20 @	Ef-GC gr-comp 5/19 1550
GENERAL CHEMISTRY Conductivity	Lab Log #.	218230	F E	F 10232	25.50 E	Z 18234	Z 18235	218230 E	218232	7 18250	Z18Z3/	218238 E	Z18Z39
Alkalinity Hardness Chloride					шш	шш					шш	шш	шш
Sulfate SOLIDS 4													
TS TNVS					шш						шш		
TSS TNVSS			ш	ш	ஐ ய	ES	ш	ш			Sш	ES	
TDS OXYGEN DEMAND PARAMETERS													
BOD5 COD COD			ш	ш	ន្ទន	ន្ទន	ш	ш			ន្ទន	ES ES	
TOC (water) NUTRIENTS			ш	ш	ш	ш	щ	ш			ш	щ	
Total Persulfate N NH3-N					шп	шп	II. II.	tL			шű	ш п «	
NO2+NO3-N Total-P					ı ш 🖁	ıшS	} ա ա	і ш ш) m N	3 m 8	
MISCELLANEOUS Oil and Grease (water)			ш	ш			S	ш					
F-Coliform MF Cyanide (total)					ш	Ш			ES	ES	ш	ш	
Cyanide (wk & dis) ORGANICS					ш	ш					ш	ш	
VOC (water) BNAs (water)			Ш	ш	ш		S	ш			ш		
Pest/PCB (water) METALS					ш						ш		
PP Metals (water) Metals 6 + Hg (tot rec)		ш			ш	ш					S	ES	
Metals 6 + Hg (dis) BIOASSAYS													
Salmonid (acute 100%) Daphnia magna (acute)													шш
Ceriodaphnia (chronic) Fathead Minnow (chronic)													и ш : :
Temperature			ш	ш			ш	Ш					
lemp-cooled:+ pH			ш	ш	и ш	шш	ES	ES			шш	шш	
Conductivity	The second secon		'n	ш	'n	ш	ES E	пS	ES	ES	ш	ш	

Tr Blk Inf Ef grab Collection Period: 0800–0800. Spokane Industrial Park composite sample Ecology composite sample SIP lab analysis Ecology lab analysis S-comp S-comp R-comp S

Transfer blank Influent Effluent Grab sample

Appendix B - Sampling Schedule - Spokane Industrial Park, 1992

|--|

MLSS River CoLtg grab Spokane Industrial Park composite sample Ecology composite sample SIP lab analysis Ecology lab analysis S-comp E-comp S

Oxidation Ditch Solids
Oxidation Ditch Solids
Spokane River Ambient Sample
Columbia Lighting discharge
Grab sample

APPENDIX C - ECOLOGY ANALYTICAL METHODS - Spokane Industrial Park, 1992

PARAMETER	MANCHESTER_METHODS	LAB USED
GENERAL CHEMISTRY		
Conductivity	EPA. Revised 1983: 120.1	ECOLOGY
Alkalinity	EPA, Revised 1983; 310.1	ECOLOGY
Hardness	EPA, Revised 1983; 130.2	ECOLOGY
Chloride	EPA, Revised 1983: 330.0	ECOLOGY
SOLIDS 4		
TS	EPA, Revised 1983: 160.3	ECOLOGY
TNVS	EPA, Revised 1983: 106.3	ECOLOGY
TSS	EPA, Revised 1983: 160.2	ECOLOGY
TNVSS	EPA, Revised 1983: 106.2	ECOLOGY
OXYGEN DEMAND PARAMETERS		
BOD5	EPA, Revised 1983: 405.1	ECOLOGY
COD	EPA, Revised 1983: 410.1	SOUND ANALYTICAL SERVICES, INC.
TOC (water)	EPA, Revised 1983: 415.1	ECOLOGY
NUTRIENTS		
Total Persulfate N	EPA, Revised 1983: 351.3	ECOLOGY
NH3-N	EPA, Revised 1983: 350.1	ECOLOGY
NO2+NO3-N	EPA, Revised 1983: 353.2	ECOLOGY
Total-P	EPA, Revised 1983: 365.3	ECOLOGY
MISCELLANEOUS		ma a a a.v
Oil and Grease (water)	EPA, Revised 1983: 413.1	ECOLOGY
F-Coliform MF	APHA, 1989: 9222D.	ECOLOGY
Cyanide (total)	EPA, Revised 1983: 335.2	ECOLOGY
Cyanide (wk & dis)	APHA, 1989: 4500-CNI.	ECOLOGY
ORGANICS	EDA 1000: 0000	WEVEDLIAFLICED
VOC (water)	EPA, 1986: 8260	WEYERHAEUSER WEYERHAEUSER
BNAs (water)	EPA, 1986: 8270	WEYERHAEUSER
Pest/PCB (water) METALS	EPA, 1986: 8080	WETENNACUSEN
PP Metals (water)	EPA, Revised 1983; 200-299	ECOLOGY
Metals (water) Metals 6 + Hg (tot rec)	EFA, nevised 1965. 200-299	ECOLOGY
Metals 6 + Hg (tot rec)		ECOLOGY
BIOASSAYS		ECOLOGI
Salmonid (acute 100%)	Ecology, 1981.	EVS CONSULTANTS
Daphnia magna (acute)	EPA 1985	EVS CONSULTANTS
Ceriodaphnia (chronic)	EPA 1989: 1002.0	EVS CONSULTANTS
Fathead Minnow (chronic)	EPA 1989: 1000.0	EVS CONSULTANTS
radioad militor (omorio)	21 71 1000. 1000.0	_,

METHOD BIBLIOGRAPHY

APHA-AWWA-WPCF, 1989. Standard Methods for the Exanination of Water and Wastewater, 17th Edition.
Ecology, 1981. Static Acute Fish Toxicity Test, WDOE 80-12, revised July 1981.
EPA, Revised 1983. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 (Rev. March, 1983).
EPA, 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. EPA/600/4-85/013.
EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd. ed., November, 1986.
EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms.
Second edition. EPA/600/4-89/100.

di Birling di Antonio					

APPENDIX D - Cleaning Procedures Prior to Sampling for Priority Pollutants - Spokane Industrial Park, 1992.

- 1.
- Wash with laboratory detergent Rinse several times with tap water 2.
- Rinse with 10% HNO3 solution 3.
- Rinse three (3) times with distilled/deionized water 4.
- Rinse with high purity methylene chloride 5.
- Rinse with high purity acetone 6.
- Allow to dry and seal with aluminum foil 7.

				•
Present Change				

Appendix E - F/M Calculations - Spokane Industrial Park, 1992

- I. Calculation of Food-to-Microorganism Ratio (F/M Ratio)
 - A. Equation:
 - 1. $F/M = S_o/\theta X$
 - 2. Where:

a. $F/M = Food-to-Microorganism Ratio: day^{-1}$

b. $S_0 = Influent BOD_5 \text{ or COD: } mg/L \text{ or } lb/day$

c. θ = Hydraulic detention time ($\theta = V/Q$): day

d. V = Aeration tank volume: Mgal

e. Q ≡ Influent and effluent flow rate: MGD

f. X = Concentration of volatile suspended solids in the aeration ditch (X = TSS - TNVSS): Averages in mg/L or lb/day

g. X_e = Concentration of volatile suspended solids in the effluent stream (X_e = TSS-TNVSS): Averages in mg/L or lb/day

h. θ_c = Mean Cell-Residence Time in days

Note: The ditch was measured by Ecology using measuring tape to determine volumes.

B. Cross Section of Aeration Ditch:

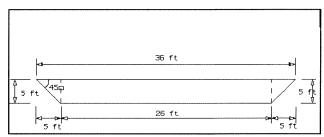


Figure 1

a.
$$A_c = 5'(26') + 2((5')(5')/2)$$

b. $A_c = 155 \text{ ft}^2$

C. Volume of Aeration ditch:

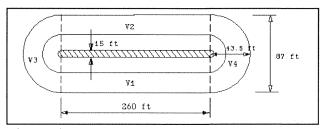


Figure 2

Appendix E - F/M Calculations (cont.) - Spokane Industrial Park, 1992

1. Inner sections:

a.
$$V_1 = V_2 \cong Length*Cross section = (260ft)*(155ft^2) = 40,300ft^2$$

b. $V_1 + V_2 = 80,600 \text{ ft}^3$

2. End sections:

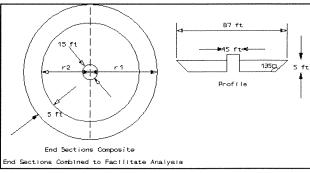


Figure 3

$$\begin{array}{l} r_1 = 87'/2 = 43.5' \\ r_2 = (87'/2 - 5') = 38.5' \\ \text{Area of Inner Island} = \pi (15/2)^2 = 176.7 \text{ ft}^2 \\ \text{a. } V_3 + V_4 \cong [5'*(\pi^*(r_2)^2) - 176.7 \text{ft}^2)] + [5'*[\pi^*((r_1)^2 - (r_2)^2)/2]] \\ \text{b. } V_3 + V_4 = 25,619.8 \text{ ft}^3 \end{array}$$

- 3. Total $V = V_1 + V_2 + V_3 + V_4 = 106,219.8 \text{ ft}^3$
- 4. Total V in gal = 794,577 gal
- D. Influent flow rate and hydraulic detention time:
 - 1. Average flow:Q = 0.602 MGD
 - 2. $\theta = V/Q = 794,577 \text{ gal}/602,000 \text{ gal/day} = 1.32 \text{ day}$
- E. Concentration of volatile suspended solids:

$$X = TSS - TNVS = 320 \text{ mg/L} - 140 \text{ mg/L} = 180 \text{ mg/L}$$

F. Concentration of Influent BOD₅

Average BOD₅ =
$$(36 \text{ mg/L} + 47 \text{ mg/L})/2 = 41.5 \text{ mg/L}$$

G. F/M ratio

$$F/M = S_o/\theta X = 41.5 \text{ mg/L}/(180 \text{ mg/L}*1.32\text{day}) = 0.18 \text{ day}^{-1}$$

Appendix E - F/M Calculations (cont.) - Spokane Industrial Park, 1992

H. Mean Cell-Residence Time (Sludge Age)

- 1. $\theta_c = V*X/Q*X_e$
- 2. V*X = 0.795Mgal * [180mg/L * (8.34 lbs/gal/mg/L)] = 1193 lbs
- 3. $Q*X_e = [((17-8)+(16-7))/2]*(mg/L)*(8.34 lbs/gal/mg/L)*0.602MGD = 45 lbs/day$
- 4. $\theta_c = 1193 \text{ lbs/}451\text{bs/}day = 26.5 \text{ days}$

I. Volumetric Loading

- 1. Loading = lbs $BOD_5/Volume(10^3ft^3)*day$
- 2. Loading = $[41.5 \text{mg/L} * (8.34 \text{ Lbs/gal/mg/L}) * 0.602 \text{ MGD}] / [106,219 \text{ ft}^3 / (1000/10^3)] = 1.96 \text{ lbBOD}_5/(10^3 \text{ft}^3)*\text{day}$

	*		

Appendix F – VOA,	Appendix F - VOA, BNA, Pesticide/PCB and Metals	Scan Results -	Park	
Lab	ation. IIII-1 Type: grab Date: 5/19 Time: 0925 Log#: 218231	m=2 grab 5/19 1510 218232	EI-1 grab 5/19 5/19 0955 1525 218236	CoLtg-1 CoLtg-2 grab grab 5/19 5/19 1355 1405 218246 218247
VOA Compounds (UNITS:)	µg/L	ηβ/L	η <u></u> β/L	ηθ/L μg/L
Chloromethane Bromomethane		10 U / / / / / / / / / / / / / / / / /	10 U 10 U 10 U 10 U	10 U 10 L
Vinyl Chloride Chloroethane			10 U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Methylene Chloride Acetone	0.000 0.000	10 U (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		10 U 10 U
Carbon Disulfide			D =	O 01 1 01 01 01 01 01 01 01 01 01 01 01 0
1,1-Dichloroethane 1,2-Dichloroethene (total)				
Chloroform 1 2-Dichloroethane) – =	200
2-Butanone (MEK))) =	200
Carbon Tetrachloride Bromodichloromethane)) =	200
1,2-Dichloropropane		10 U v v v v v v v v v v v v v v v v v v))	2 0 0
Trichloroethene Dibromochloromethene				2 2 9
1,1,2-Trichloroethane		10 U P. P. S.	2 6 9	20
trans-1,3-Dichloropropene	0.00))	2 2
Bromotorm 4-Methyl-2-Pentanone (MIBK)		10 C		0 2 2
2-Hexanone Tetrachloroethene				10 U
1,1,2,2=1euacmoroemane Toluene Chlorobenzene		10 U	> > =	2 Q Ç
Ethylbenzene		10 U) – 2	2 co (
Total Xylenes			.	10 0 10 0 42 50 0

Analysis of sample used a dilution.
The analyte was positively identified. The associated numerical result is an estimate.
The analyte was not detected above the reported result. ם דם

Appendix F (cont'd) - Spokane Industrial Park - 1992.

Parameter Location: Type: Date: Time: Lab Log#:	Inf-E E-comp 5/19-20 @ 218233	8 3 3	Ef-E E-comp 5/19-20 @ 218237	
BNA Compounds (UNITS:)	Лр		ng/L	
Phenol Bis(2-Chloroethyl)Ether			10 U STANDARD STANDAR	
2-Chlorophenol 13-Dichloropenzene			010	
14-Dichlorobenzene				
2-Methylphenol Bis(2-Chlorisopropy))Ether			10 0 0	
4-Methylphenol N-Nitroso-di-n-Propylamine				
Hexachloroethane Nitrohanzene				
Rophorone 2-Nitronhenol				
2 - Twit opinions 2 - Will opinions 8 s - Chlorophoxy Methane				
2.4—Dichlorophenol 1.2.4—Trichlorophenol			10 U	
Naphthalene 4-Chloroaniline			1000	
Hearn Control of the Chicago and the Chicago a				
2-Methylnaphthalene Hexachlorocyclopentadiene				
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol			10 U	
2-Chloronaphthalene 2-Nitroaniline			10 U O O O O O O O O O O O O O O O O O O	
Dimethyl Phthalate Acenaphthylene				
2.6-Dinitrotoluene 3-Nitroaniline	10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 U	
Acenaphthene 2.4-Dinitrophenol			10 U 200 H 2	
4-Nitrophenol Dibenzofuran			25.0	
2,4-Dinitrotoluene Diethyl Phthalate				
4–Chlorophenyl Phenylether Fluorene				
4-Nitroaniline 4,6-Dinitro-2-Methylphenol	25		25 U	
N-Nitrosodiphenylamine 4-Bromophenyl Phenylether	TO TO THE THE PROPERTY OF THE PARTY OF THE P		10 U = 10	
Hexachlorobenzene Pentachlorophenol	25 10 25 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10		10 U 25 U 2 25 U 2 25 U 2 2 2 2 2 2 2 2 2	
Phenanthrene	101 The State of Stat		10 U	

U The analyte was not detected above the reported result.

Appendix F (cont'd) - Spokane Industrial Park - 1992.

Lab Log#:	5/19-20 6/19-20 © 218233	£8,⊜%		E-comp 5/19-20 @ 218237		
BNA Compounds (UNITS:)	7/8 <i>n</i>	7/	The state of the s	µg/L	A control of the cont	
Anthracene Di-n-Butyl Phthalate	010	3 3		10 U		
Fluoranthene		D =				
Butylbenzyl Phthalate 3.3'-Dichlorobenzidine						
Benzo(a)Anthracene Chrysene	0					
ylhexyl)Phthalate	2					
Benzo(b) Fluoranthene Benzo(k) Fluoranthene	10					
Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene	10			10 0		
	10					
Parameter Location: Type Date: Time: Lab Log#:	Inf-E E-comp 5/19-20 @ 218233	# 6 00 @ 8		Ef-E E-comp 5/19-20 0 218237		
Pesticides/PCBs Compounds (UNITS:)	μg/L	, //		J/B/L		
alpha-BHC beta-BHC						
delta-BHC gamma-BHC (Lindane)	0.05			0.05 U		
Heptachlor Aldrin		ار U				
Heptachlor Epoxide Endosulfan l	0.05	ם ב				
Dieldrin 4,4'-DDE	000	3 3		0.10		
Endrin Endosulfan II	000			0 1 0 0		
4,4'-DDD Endosulfan Sulfate	0.1					
4,4'-DDT Methoxychlor	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			0.1 0		
Endrin Ketone alpha-Chlordane	0.1	3 5		0.10 0.11 0.11 0.11		
gamma-Chlordane	1.0					

The analyte was positively identified. The associated numerical result is an estimate. Analyte was detected above the instrument detection limits, but below the minimum qualification limits.

The analyte was not detected above the reported result.

> ₾

 $[\]supset$

Appendix F (cont'd) - Spokane Industrial Park - 1992.

	Location: Type: Date: Time: Lab Log#:					E-	Inf-E E-comp 5/19-20 @ 218233				Ef-E E-comp 5/19-20 @ 218237				
Pesticides/PCBs Compounds (UNITS:)	spunoduo						μg/L				η/6 <i>π</i>				
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1260 Endrin Aldehyde											222222				
	Location: Type: Date: Time: Lab Log#:		Tr Blk 5/18 1540 218230			E-	Inf-E E-comp 5/19-20 @ 218233	Inf-S S-comp 5/19-20 @ 218234			Ef-E E-comp 5/19-20 @ 218237	Ef-S S-comp 5/19-20 @ 218238	Intake grab 5/19 1620 218243	CoLtg-1 grab 5/19 1355 218246	CoLtg-2 grab 5/19 1405 218247
Metals (Total) (UNITS:)	Hardness =	170	μg/L				ηβ/Γ	μg/L			7/B//	√g/L	µg/L	ηβ/L	ηβη.
Antimony Arsenic Pentavalent			30 U 1.5 U			6, 2i	30 U	30 U 2.9 P			30 U 3.1 P	30 U 3.6 P	30 U 4.2 P	30 U 3.7 P	35 P
Trivalent Beryllium Cadmium Chromium Hexavalent Trivalent			0.000 6			20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 S C C C C C C C C C C C C C C C C C C	2.12 5.12 U d			2.87 5. U	2.64 5.0 0.0			0.00 to 0.00 t
Lead Mercury Nickel Selenium Silver Thallium Zinc						0.973 0.973 399 2 2 1.2 2.5 56.5	Z	305 306 366 366 25 U 25 U 85.7			202 402 10.552 170 B 170 B 1.9 N 2.5 U 72.4	2.50 0.651.N 0.651.N 187.B 2.2 U 2.5 U 72.8	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0	2.7 0.45 PN 24 PB 2.5 U 8.3.8 U
B Analyte was findicating the indicating the J The analyte v the associate N For metals are recovery is no P Analyte was but below the U The analyte v	Analyte was found in the analytic method blank, indicating the sample may have been contaminated. The analyte was positively identified, but the associated result is an estimate. For metals analytes the spike sample recovery is not within control limits. Analyte was detected above the instrument detection limits, but below the minimum qualification limits. The analyte was not detected above the reported result.	ulytic methave been entified, I stimate. Sample limits. the instru fication li fabove th	nod blank, contamini but ment dete imits.	ated. ction limits,	E S (0) comp grab grab	III (A e. C C	Ecology Sample. Spokane STP sample. Composite sampling time Composite sample. Grab sample. Grab composite sample	Ecology Sample. Spokane STP sample. Composite sampling time: 0800–0800 Composite sample. Grab sample. Grab-composite sample.	0800-0800.	Tr Blk Inf Ef Intake MLSS CoLtg	Transfer blank Influent Effluent SIP water supply Oxidation Ditch Solids Columbia Lighting discharge	Solids ng discharge			

Appendix G - Tentatively Identified Compounds - SIP, 1992. Page 1.

Sample Location:	Inf-E		
Type:	comp		
Date:	5/19-20/92		
Time:	24 hours		
Sample ID:	218233		
Compound Name		Estimated Concentration (μ g/L)	Qualifier
1.UNKNOWN		40	J
2.METHANONE, D	IPHENYL-	84	NJ
3.ETHANOL, 2-[2-((2-PHENOXYATHO)]	- 47	NJ
4.UNKNOWN		3 9	J
5.UNKNOWN		24	J
6.UNKNOWN		3 9	J
7.UNKNOWN		16	J
8.UNKNOWN		47	J
9.UNKNOWN		26	J
10.UNKNOWN		21	J
11.UNKNOWN		21	J
12.UNKNOWN		21	J
13.UNKNOWN		4 9	J
14.UNKNOWN		36	J
15.UNKNOWN		12	J
16.UNKNOWN		32	J
17.PHOSPHINE SU	LFIDE, TRIPHENYL	24	NJ
18.UNKNOWN		22	J
19.CHLOESTAN-3-	OL, (3.BETA.,5.A)-	34	NJ
20.CHOLEST-5-EN-	-3-OL (3.Beta.)-	18	NJ

J The associated numerical result is an estimated quantity.

NJ There is evidence that the analyte is present. The associated numerical result is an estimate.

Ef Efluent sample grab Grab sample

Inf Influent sample comp Composite sample

E Ecology sample CoLtg Columbia Lighting, Inc. sample

Appendix G - Tentatively Identified Compounds (cont.)

Page 2.

Sample Location:

EF-1

Туре:

grab

Date:

5/19/92

Time:

0955

Sample ID:

218235

Compound Name

Estimated Concentration (μ g/L)

Qualifier

1.HEXAMETHYLCYCLOTRISILOXANE

21

JN

2. Cyclotetrasiloxane, octameth-

27

JN

Sample Location:

EF-2

Туре:

grab

Date:

5/19/92

Time:

1525

Sample ID:

218236

Compound Name

Estimated Concentration (μ g/L)

Qualifier

1. Cyclotetrasiloxane, octameth-

97

NJ

Sample Location:	EF-E		
Type:	comp		
Date:	5/19-20/92		
Time:	24 hours		
Sample ID:	218237		
Compound Name		Estimated Concentration (μ g/L)	Qualifier
1.UNKNOWN		15	J
2.UNKNOWN		33	J
3.ETHANOL, 2-[2-(2-PHENOXYETHO)]		- 9	NJ
4.UNKNOWN		8	J
5.UNKNOWN		20	J
6.UNKNOWN		15	J
7.UNKNOWN		14	J
8.UNKNOWN		15	J
9.UNKNOWN		43	J
10.UNKNOWN		7	J
11.UNKNOWN		8	J
12.UNKNOWN		18	J
13.UNKNOWN		7	J
14.UNKNOWN		12	J
15.UNKNOWN		19	J
16.UNKNOWN		38	J
17.PHOSOHINE OXIDE, TRIPHENYL-		15	NJ
18.UNKNOWN		15	J
19.PHOSPHINE SULFIDE < TRIPHENY		L- 25	NJ
20.UNKNOWN		28	J

Sample Location: Type: Date: Time:	CoLtg-1 grab 5/19/92 1355 218246		
Sample ID: Compound Name 1.Cyclotetrasiloxane		Estimated Concentration (μg/L) 49	Qualifier NJ

Appendix G - Tentatively Identified Compounds (cont.)

Page 4.

Sample Location: Type: Date: Time: Sample ID:	CoLtg-2 grab 5/19/92 1405 218247		
Compound Name 1 1-propanol, 2-meth 2. HEXAMETHYLO 3. Cyclotetrasiloxane	ıyl- CYCLOTRISILOXANI	Estimated Concentration (μg/L) 12 E 9 22	Qualifier NJ NJ NJ